If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+18x=5
We move all terms to the left:
3x^2+18x-(5)=0
a = 3; b = 18; c = -5;
Δ = b2-4ac
Δ = 182-4·3·(-5)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-8\sqrt{6}}{2*3}=\frac{-18-8\sqrt{6}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+8\sqrt{6}}{2*3}=\frac{-18+8\sqrt{6}}{6} $
| 13=20c+39 | | -1x5=9+3x | | 12y+3=13 | | 1-4x=x+2/3 | | |5x-1|-7=-3 | | 13x—x+-11x+11x+18x=-10 | | 5^2x-12(5^x)=-35 | | 2x+5x+3x+50=180 | | 3=-12y+13 | | 236,532+218,341+x/3=215325 | | 2x=7=2 | | 13x—x+-11x-11x+18x=-10 | | 15+5.50*2=c | | X-16=-5x-3 | | 4n+4(1+4n)=44 | | 2x+8=2x+ | | 180=x+2(x+6)+3(x+8) | | 5x+19=x+55 | | 5x+14=x+18 | | P(x)=x^2+14x+50 | | 2(x-15)=2x-12 | | -4x+16=x-14 | | -3x-18=-3x+ | | x+5(2x+14)=180 | | 2(2x-4)=72 | | -1.1x+3.6=2.2 | | -1/2(10x-20)=1/3(9x-18) | | -3x-18=-3x | | 20-2x=31 | | 2(2x-11)=x+5 | | 2(2n+7)=21 | | 2(2x-18)=2x-16 |